If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-18x+2=0
a = 10; b = -18; c = +2;
Δ = b2-4ac
Δ = -182-4·10·2
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{61}}{2*10}=\frac{18-2\sqrt{61}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{61}}{2*10}=\frac{18+2\sqrt{61}}{20} $
| 3x-5x-9=5 | | -12b-5=3b | | 7t+1.8=3.1 | | -6-3x=15/2 | | 6(h-81)=36 | | Y=-x(2x-5) | | 6(d-81)=90 | | -1/2x-3/10=-24/5 | | 6-8x=9x+16 | | 20x+52=2x+1 | | 3-4u=15 | | -4y=2×+5 | | 6x-7=-21/2 | | Y=1/4x-11/4 | | 4d+3(6-d)=-3 | | 9r/4=2/3 | | 20=2m-(-8) | | 4d*3(6-d)=-3 | | X+7=8.3;x=1.3 | | -4x-1/5=49/55 | | 6x+12=18- | | 41/9+k=63/9 | | 2(7X-3)+3(2x+2)=60 | | z-41/3=2 | | X-4.5=5.9;x=9.4 | | 8x5/4-5=0 | | 4(1x-3)=24 | | d/4-7=-8 | | 3+2x=9/2 | | 2×+y=0.1(y+3) | | 20=m+5/6 | | a/3+6=24 |